Cargando…
Pilot-scale study on catalytic ozonation of bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst
A pilot scale reactor with an effective volume of 2.93 m(3) was built in-situ and run in both batch and continuous modes to investigate the removal for organic pollutants in bio-treated dyeing and finishing wastewater by heterogeneous catalytic ozonation under neutral pH with waste iron shavings as...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954159/ https://www.ncbi.nlm.nih.gov/pubmed/29765092 http://dx.doi.org/10.1038/s41598-018-25761-6 |
Sumario: | A pilot scale reactor with an effective volume of 2.93 m(3) was built in-situ and run in both batch and continuous modes to investigate the removal for organic pollutants in bio-treated dyeing and finishing wastewater by heterogeneous catalytic ozonation under neutral pH with waste iron shavings as a catalyst. Experimental results showed that both running modes were able to reduce the chemical oxygen demand (COD) from 132–148 mg/L to a level below the discharge criteria (<80 mg/L) within 15–30 mins under several conditions. Specifically, significantly organic removal was observed with COD, soluble COD (sCOD) and dissolved organic carbon (DOC) decreased from the initial 165, 93 and 76 mg/L to 54, 28 and 16 mg/L respectively, when treated by 10.2 g-O(3)/min of ozone dosage at a hydraulic retention time of 30 mins under continuous mode. 80% proteins and 85% polysaccharides were removed with a decrease in their contribution to sCOD from 69% to 43%. Mineralization as well as conversion of high molecular organic compounds was observed through Gas Chromatography-Mass Spectrometer (GC-MS) & Liquid Chromatography-Mass Spectrometer (LC-MS) analysis, which led to a decrease of inhibitory effect from 29% to 25%, suggesting a reduction in the acute toxicity. |
---|