Cargando…

Microscopic and Molecular Evidence of the First Elasmobranch Adomavirus, the Cause of Skin Disease in a Giant Guitarfish, Rhynchobatus djiddensis

Only eight families of double-stranded DNA (dsDNA) viruses are known to infect vertebrate animals. During an investigation of papillomatous skin disease in an elasmobranch species, the giant guitarfish (Rhynchobatus djiddensis), a novel virus, distinct from all known viral families in regard to part...

Descripción completa

Detalles Bibliográficos
Autores principales: Dill, Jennifer A., Camus, Alvin C., Leary, John H., Ng, Terry Fei Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954223/
https://www.ncbi.nlm.nih.gov/pubmed/29764943
http://dx.doi.org/10.1128/mBio.00185-18
Descripción
Sumario:Only eight families of double-stranded DNA (dsDNA) viruses are known to infect vertebrate animals. During an investigation of papillomatous skin disease in an elasmobranch species, the giant guitarfish (Rhynchobatus djiddensis), a novel virus, distinct from all known viral families in regard to particle size, morphology, genome organization, and helicase phylogeny was discovered. Large inclusion bodies containing 75-nm icosahedral viral particles were present within epithelial cell nuclei in the proliferative skin lesions. Deep metagenomic sequencing revealed a 22-kb circular dsDNA viral genome, tentatively named guitarfish “adomavirus” (GAdoV), with only distant homology to two other fish viruses, Japanese eel endothelial cell-infecting virus (JEECV) and a recently reported marbled eel virus. Phylogenetic analysis of the helicase domain places the guitarfish virus in a novel clade that is equidistant between members of the Papillomaviridae and Polyomaviridae families. Specific PCR, quantitative PCR, and in situ hybridization were used to detect, quantify, and confirm that GAdoV DNA was localized to affected epithelial cell nuclei. Changes in the viral titer, as well as the presence of a hybridization signal, coincided with the progression and then final resolution of gross and microscopic lesions. The results indicate that GAdoV is the causative agent of the proliferative skin lesions.