Cargando…

Towards pan-genome read alignment to improve variation calling

BACKGROUND: Typical human genome differs from the reference genome at 4-5 million sites. This diversity is increasingly catalogued in repositories such as ExAC/gnomAD, consisting of >15,000 whole-genomes and >126,000 exome sequences from different individuals. Despite this enormous diversity,...

Descripción completa

Detalles Bibliográficos
Autores principales: Valenzuela, Daniel, Norri, Tuukka, Välimäki, Niko, Pitkänen, Esa, Mäkinen, Veli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954285/
https://www.ncbi.nlm.nih.gov/pubmed/29764365
http://dx.doi.org/10.1186/s12864-018-4465-8
Descripción
Sumario:BACKGROUND: Typical human genome differs from the reference genome at 4-5 million sites. This diversity is increasingly catalogued in repositories such as ExAC/gnomAD, consisting of >15,000 whole-genomes and >126,000 exome sequences from different individuals. Despite this enormous diversity, resequencing data workflows are still based on a single human reference genome. Identification and genotyping of genetic variants is typically carried out on short-read data aligned to a single reference, disregarding the underlying variation. RESULTS: We propose a new unified framework for variant calling with short-read data utilizing a representation of human genetic variation – a pan-genomic reference. We provide a modular pipeline that can be seamlessly incorporated into existing sequencing data analysis workflows. Our tool is open source and available online: https://gitlab.com/dvalenzu/PanVC. CONCLUSIONS: Our experiments show that by replacing a standard human reference with a pan-genomic one we achieve an improvement in single-nucleotide variant calling accuracy and in short indel calling accuracy over the widely adopted Genome Analysis Toolkit (GATK) in difficult genomic regions.