Cargando…

Troxerutin and Cerebroprotein Hydrolysate Injection Protects Neurovascular Units from Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury In Vitro

Cerebral ischemia/reperfusion (I/R) injury involves complex events of cellular and molecular processes. Previous studies suggest that a neurovascular unit (NVU) acts as an intricate network to maintain the neuronal homeostatic microenvironment. The present study established an NVU model for oxygen-g...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhào, Hóngyi, Liu, Yu, Zeng, Jing, Li, Dandan, Zhang, Weiwei, Huang, Yonghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954925/
https://www.ncbi.nlm.nih.gov/pubmed/29853981
http://dx.doi.org/10.1155/2018/9859672
Descripción
Sumario:Cerebral ischemia/reperfusion (I/R) injury involves complex events of cellular and molecular processes. Previous studies suggest that a neurovascular unit (NVU) acts as an intricate network to maintain the neuronal homeostatic microenvironment. The present study established an NVU model for oxygen-glucose deprivation and reoxygenation (OGD/R) damage, trying to target the major components of the NVU using a coculture of rat neurons, astrocytes, and rat brain microvascular endothelial cells (rBMECs) to investigate the therapeutic effects of troxerutin and cerebroprotein hydrolysate injections (TCHis). The study observed that OGD/R downregulated the expressions of GAP-43, Claudin-5, and AQP-4 obviously detected by Western blotting and immunocytochemical analysis, respectively, while TCHi ameliorated the effect of OGD/R significantly. Meanwhile, TCHi alleviated the abnormalities of ultrastructure of neurons and rBMECs induced by OGD/R. Furthermore, both levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and cell adhesion molecules (VCAM-1 and ICAM-1) detected by ELISA in NVU supernatant were found elevated significantly through OGD/R, but TCHi ameliorated the trend. In addition, TCHi also mitigated the increase of proapoptotic factors (Bax, p53, and caspase-3) induced by OGD/R in NVU model statistically. All these findings demonstrated that TCHis played a protective role, which was reflected in anti-inflammation, antiapoptosis, and blood–brain barrier maintenance. The results of the study concluded that the NVU is an ideal target and TCHi acts as a neuroprotective agent against cerebral I/R injuries.