Cargando…
Poverty dynamics, poverty thresholds and mortality: An age-stage Markovian model
Recent studies have examined the risk of poverty throughout the life course, but few have considered how transitioning in and out of poverty shape the dynamic heterogeneity and mortality disparities of a cohort at each age. Here we use state-by-age modeling to capture individual heterogeneity in cro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955488/ https://www.ncbi.nlm.nih.gov/pubmed/29768416 http://dx.doi.org/10.1371/journal.pone.0195734 |
Sumario: | Recent studies have examined the risk of poverty throughout the life course, but few have considered how transitioning in and out of poverty shape the dynamic heterogeneity and mortality disparities of a cohort at each age. Here we use state-by-age modeling to capture individual heterogeneity in crossing one of three different poverty thresholds (defined as 1×, 2× or 3× the “official” poverty threshold) at each age. We examine age-specific state structure, the remaining life expectancy, its variance, and cohort simulations for those above and below each threshold. Survival and transitioning probabilities are statistically estimated by regression analyses of data from the Health and Retirement Survey RAND data-set, and the National Longitudinal Survey of Youth. Using the results of these regression analyses, we parameterize discrete state, discrete age matrix models. We found that individuals above all three thresholds have higher annual survival than those in poverty, especially for mid-ages to about age 80. The advantage is greatest when we classify individuals based on 1× the “official” poverty threshold. The greatest discrepancy in average remaining life expectancy and its variance between those above and in poverty occurs at mid-ages for all three thresholds. And fewer individuals are in poverty between ages 40-60 for all three thresholds. Our findings are consistent with results based on other data sets, but also suggest that dynamic heterogeneity in poverty and the transience of the poverty state is associated with income-related mortality disparities (less transience, especially of those above poverty, more disparities). This paper applies the approach of age-by-stage matrix models to human demography and individual poverty dynamics. In so doing we extend the literature on individual poverty dynamics across the life course. |
---|