Cargando…
Automated and real-time segmentation of suspicious breast masses using convolutional neural network
In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automati...
Autores principales: | Kumar, Viksit, Webb, Jeremy M., Gregory, Adriana, Denis, Max, Meixner, Duane D., Bayat, Mahdi, Whaley, Dana H., Fatemi, Mostafa, Alizad, Azra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955504/ https://www.ncbi.nlm.nih.gov/pubmed/29768415 http://dx.doi.org/10.1371/journal.pone.0195816 |
Ejemplares similares
-
Diagnostic features of quantitative comb-push shear elastography for breast lesion differentiation
por: Bayat, Mahdi, et al.
Publicado: (2017) -
Automatic Deep Learning Semantic Segmentation of Ultrasound Thyroid Cineclips Using Recurrent Fully Convolutional Networks
por: WEBB, JEREMY M., et al.
Publicado: (2020) -
Viscoelastic biomarker for differentiation of benign and malignant breast lesion in ultra- low frequency range
por: Nabavizadeh, Alireza, et al.
Publicado: (2019) -
Predictive value of comb-push ultrasound shear elastography for the differentiation of reactive and metastatic axillary lymph nodes: A preliminary investigation
por: Gregory, Adriana, et al.
Publicado: (2020) -
Viscoelastic parameters as discriminators of breast masses: Initial human study results
por: Kumar, Viksit, et al.
Publicado: (2018)