Cargando…
Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells
Homozygous mutations of human HTRA1 cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). HtrA1(-/-) mice were examined for arterial abnormalities. Although their cerebral arteries were normal, the thoracic aorta was affected in HtrA1(-/-) mice....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955505/ https://www.ncbi.nlm.nih.gov/pubmed/29768431 http://dx.doi.org/10.1371/journal.pone.0196628 |
_version_ | 1783323728513335296 |
---|---|
author | Ikawati, Muthi Kawaichi, Masashi Oka, Chio |
author_facet | Ikawati, Muthi Kawaichi, Masashi Oka, Chio |
author_sort | Ikawati, Muthi |
collection | PubMed |
description | Homozygous mutations of human HTRA1 cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). HtrA1(-/-) mice were examined for arterial abnormalities. Although their cerebral arteries were normal, the thoracic aorta was affected in HtrA1(-/-) mice. The number of vascular smooth muscle cells (VSMCs) in the aorta was increased in HtrA1(-/-) mice of 40 weeks or younger, but decreased thereafter. The cross-sectional area of the aorta was increased in HtrA1(-/-) mice of 40 weeks or older. Aortic VSMCs isolated from HtrA1(-/-) mice rapidly proliferated and migrated, produced high MMP9 activity, and were prone to oxidative stress-induced cell death. HtrA1(-/-) VSMCs expressed less smooth muscle α-actin, and more vimentin and osteopontin, and responded to PDGF-BB more strongly than wild type VSMCs, indicating that HtrA1(-/-) VSMCs were in the synthetic phenotype. The elastic lamina was disrupted, and collagens were decreased in the aortic media. Calponin in the media was decreased, whereas vimentin and osteopontin were increased, suggesting a synthetic shift of VSMCs in vivo. Loss of HtrA1 therefore skews VSMCs toward the synthetic phenotype, induces MMP9 expression, and expedites cell death. We propose that the synthetic modulation is the primary event that leads to the vascular abnormalities caused by HtrA1 deficiency. |
format | Online Article Text |
id | pubmed-5955505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59555052018-05-25 Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells Ikawati, Muthi Kawaichi, Masashi Oka, Chio PLoS One Research Article Homozygous mutations of human HTRA1 cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). HtrA1(-/-) mice were examined for arterial abnormalities. Although their cerebral arteries were normal, the thoracic aorta was affected in HtrA1(-/-) mice. The number of vascular smooth muscle cells (VSMCs) in the aorta was increased in HtrA1(-/-) mice of 40 weeks or younger, but decreased thereafter. The cross-sectional area of the aorta was increased in HtrA1(-/-) mice of 40 weeks or older. Aortic VSMCs isolated from HtrA1(-/-) mice rapidly proliferated and migrated, produced high MMP9 activity, and were prone to oxidative stress-induced cell death. HtrA1(-/-) VSMCs expressed less smooth muscle α-actin, and more vimentin and osteopontin, and responded to PDGF-BB more strongly than wild type VSMCs, indicating that HtrA1(-/-) VSMCs were in the synthetic phenotype. The elastic lamina was disrupted, and collagens were decreased in the aortic media. Calponin in the media was decreased, whereas vimentin and osteopontin were increased, suggesting a synthetic shift of VSMCs in vivo. Loss of HtrA1 therefore skews VSMCs toward the synthetic phenotype, induces MMP9 expression, and expedites cell death. We propose that the synthetic modulation is the primary event that leads to the vascular abnormalities caused by HtrA1 deficiency. Public Library of Science 2018-05-16 /pmc/articles/PMC5955505/ /pubmed/29768431 http://dx.doi.org/10.1371/journal.pone.0196628 Text en © 2018 Ikawati et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ikawati, Muthi Kawaichi, Masashi Oka, Chio Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells |
title | Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells |
title_full | Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells |
title_fullStr | Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells |
title_full_unstemmed | Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells |
title_short | Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells |
title_sort | loss of htra1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955505/ https://www.ncbi.nlm.nih.gov/pubmed/29768431 http://dx.doi.org/10.1371/journal.pone.0196628 |
work_keys_str_mv | AT ikawatimuthi lossofhtra1serineproteaseinducessyntheticmodulationofaorticvascularsmoothmusclecells AT kawaichimasashi lossofhtra1serineproteaseinducessyntheticmodulationofaorticvascularsmoothmusclecells AT okachio lossofhtra1serineproteaseinducessyntheticmodulationofaorticvascularsmoothmusclecells |