Cargando…

A novel hamster nonalcoholic steatohepatitis model induced by a high-fat and high-cholesterol diet

Nonalcoholic steatohepatitis (NASH), in which there is steatosis and fibrosis in the liver, is linked to metabolic syndrome and progresses to hepatic cirrhosis. In this study, a novel hamster NASH model derived from metabolic syndrome was made using hamsters. Hamsters were fed a normal or a high-fat...

Descripción completa

Detalles Bibliográficos
Autores principales: Miyaoka, Yuta, Jin, Denan, Tashiro, Keitaro, Masubuchi, Shinsuke, Ozeki, Maiko, Hirokawa, Fumitoshi, Hayashi, Michihiro, Takai, Shinji, Uchiyama, Kazuhisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Association for Laboratory Animal Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955755/
https://www.ncbi.nlm.nih.gov/pubmed/29311502
http://dx.doi.org/10.1538/expanim.17-0126
Descripción
Sumario:Nonalcoholic steatohepatitis (NASH), in which there is steatosis and fibrosis in the liver, is linked to metabolic syndrome and progresses to hepatic cirrhosis. In this study, a novel hamster NASH model derived from metabolic syndrome was made using hamsters. Hamsters were fed a normal or a high-fat and high-cholesterol (HFC) diet for 12 weeks. Body weight and the ratio of liver weight to body weight were significantly greater in HFC diet-fed hamsters than in normal diet-fed hamsters. Triglyceride, low-density lipoprotein cholesterol, and glucose levels in blood were significantly increased in HFC diet-fed hamsters, and blood pressure also tended to be high, suggesting that the HFC diet-fed hamsters developed metabolic syndrome. Hepatic steatosis and fibrosis were observed in liver sections of HFC diet-fed hamsters, as in patients with NASH, but they were not seen in normal diet-fed hamsters. Chymase generates angiotensin II and transforming growth factor (TGF)-β, both of which are related to hepatic steatosis and fibrosis, and a significant augmentation of chymase activity was observed in livers from HFC diet-fed hamsters. Both angiotensin II and TGF-β were also significantly increased in livers of HFC diet-fed hamsters. Thus, HFC diet-fed hamsters might develop metabolic syndrome-derived NASH that clinically resembles that in NASH patients.