Cargando…
Hcp/fcc nucleation in bcc iron under different anisotropic compressions at high strain rate: Molecular dynamics study
Previous researches have revealed the importance of shear and the orientation dependence in the structural transition of iron. In this work, we introduce a series of shear deformations by adjusting the strain ratio between the longitudinal ([001]) and transversal ([010] and [100]) directions, and th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956102/ https://www.ncbi.nlm.nih.gov/pubmed/29769596 http://dx.doi.org/10.1038/s41598-018-25758-1 |
Sumario: | Previous researches have revealed the importance of shear and the orientation dependence in the structural transition of iron. In this work, we introduce a series of shear deformations by adjusting the strain ratio between the longitudinal ([001]) and transversal ([010] and [100]) directions, and then investigate this structural transition under different anisotropic compressions with molecular dynamics simulations. It is found that the shear deformation can lower the transition pressure notably, and even change the nucleation structure and morphology. Under 1D-dominated compression (along (001) direction), there only appears hcp nucleation with a few fcc stacking faults. For other cases, more equivalent planes will be activated and fcc structure begins to nucleate. Under 2D-dominated compression (along (010) and (001) directions), the fcc mass fraction is already over the hcp phase. At last, we compare the variations of shear stress and potential energy for different phases, and present the sliding mechanism under typical anisotropic compressions. |
---|