Cargando…

Transforming growth factor-β signaling in systemic sclerosis

Systemic sclerosis (SSc) is a complex, multiorgan autoimmune disease of unknown etiology. Manifestation of the disease results from an interaction of three key pathologic features including irregularities of the antigen-specific immune system and the non-specific immune system, resulting in autoanti...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayers, Nolan B., Sun, Chen-Ming, Chen, Shi-You
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial Department of Journal of Biomedical Research 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956255/
https://www.ncbi.nlm.nih.gov/pubmed/29353817
http://dx.doi.org/10.7555/JBR.31.20170034
Descripción
Sumario:Systemic sclerosis (SSc) is a complex, multiorgan autoimmune disease of unknown etiology. Manifestation of the disease results from an interaction of three key pathologic features including irregularities of the antigen-specific immune system and the non-specific immune system, resulting in autoantibody production, vascular endothelial activation of small blood vessels, and tissue fibrosis as a result of fibroblast dysfunction. Given the heterogeneity of clinical presentation of the disease, a lack of universal models has impeded adequate testing of potential therapies for SSc. Regardless, recent research has elucidated the roles of various ubiquitous molecular mechanisms that contribute to the clinical manifestation of the disease. Transforming growth factor β (TGF-β) has been identified as a regulator of pathological fibrogenesis in SSc. Various processes, including cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis are regulated by TGF-β, a type of cytokine secreted by macrophages and many other cell types. Understanding the essential role TGF-β pathways play in the pathology of systemic sclerosis could provide a potential outlet for treatment and a better understanding of this severe disease.