Cargando…
Quantified Hypoxia and Anoxia in Lakes and Reservoirs
Hypoxia and anoxia occur frequently in freshwater systems and have biological and chemical implications. Anoxia can be expressed and quantified as the anoxic factor; hypoxia, for a specific level of oxygen depletion, can be expressed as the hypoxic factor in lakes, reservoirs, and river sections. Th...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
TheScientificWorldJOURNAL
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956421/ https://www.ncbi.nlm.nih.gov/pubmed/15004318 http://dx.doi.org/10.1100/tsw.2004.5 |
_version_ | 1783323888955949056 |
---|---|
author | Nürnberg, Gertrud K. |
author_facet | Nürnberg, Gertrud K. |
author_sort | Nürnberg, Gertrud K. |
collection | PubMed |
description | Hypoxia and anoxia occur frequently in freshwater systems and have biological and chemical implications. Anoxia can be expressed and quantified as the anoxic factor; hypoxia, for a specific level of oxygen depletion, can be expressed as the hypoxic factor in lakes, reservoirs, and river sections. These methods summarize information of individual dissolved oxygen profiles as annual values or factors that facilitate comparison between and within lakes. Therefore, these factors are useful in the formulation and testing of hypotheses related to the dissolved oxygen status in water bodies. Methods of calculating different factors for different oxygen levels and water layers, including those applying separately to the epilimnion and hypolimnion, are presented in detail. Proven and potential applicability include: (1) the quantification of relationships with lake water quality variables and lake classification (trophic state), (2) the evaluation of restoration techniques with respect to their effects on hypolimnetic oxygen depletion, (3) the determination of internal phosphorus loading in stratified and polymictic lakes, (4) the exploration of habitat constraints due to hypoxia (e.g., fish species richness and winterkill), (5) forecasting potential effects of climatic change on oxygen content and internal phosphorus loading, and (6) the establishment and examination of criteria and guidelines with respect to hypoxia by custom-made definitions. |
format | Online Article Text |
id | pubmed-5956421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | TheScientificWorldJOURNAL |
record_format | MEDLINE/PubMed |
spelling | pubmed-59564212018-06-03 Quantified Hypoxia and Anoxia in Lakes and Reservoirs Nürnberg, Gertrud K. ScientificWorldJournal Research Article Hypoxia and anoxia occur frequently in freshwater systems and have biological and chemical implications. Anoxia can be expressed and quantified as the anoxic factor; hypoxia, for a specific level of oxygen depletion, can be expressed as the hypoxic factor in lakes, reservoirs, and river sections. These methods summarize information of individual dissolved oxygen profiles as annual values or factors that facilitate comparison between and within lakes. Therefore, these factors are useful in the formulation and testing of hypotheses related to the dissolved oxygen status in water bodies. Methods of calculating different factors for different oxygen levels and water layers, including those applying separately to the epilimnion and hypolimnion, are presented in detail. Proven and potential applicability include: (1) the quantification of relationships with lake water quality variables and lake classification (trophic state), (2) the evaluation of restoration techniques with respect to their effects on hypolimnetic oxygen depletion, (3) the determination of internal phosphorus loading in stratified and polymictic lakes, (4) the exploration of habitat constraints due to hypoxia (e.g., fish species richness and winterkill), (5) forecasting potential effects of climatic change on oxygen content and internal phosphorus loading, and (6) the establishment and examination of criteria and guidelines with respect to hypoxia by custom-made definitions. TheScientificWorldJOURNAL 2004-02-26 /pmc/articles/PMC5956421/ /pubmed/15004318 http://dx.doi.org/10.1100/tsw.2004.5 Text en Copyright © 2004 Gertrud K. Nurnberg. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nürnberg, Gertrud K. Quantified Hypoxia and Anoxia in Lakes and Reservoirs |
title | Quantified Hypoxia and Anoxia in Lakes and Reservoirs |
title_full | Quantified Hypoxia and Anoxia in Lakes and Reservoirs |
title_fullStr | Quantified Hypoxia and Anoxia in Lakes and Reservoirs |
title_full_unstemmed | Quantified Hypoxia and Anoxia in Lakes and Reservoirs |
title_short | Quantified Hypoxia and Anoxia in Lakes and Reservoirs |
title_sort | quantified hypoxia and anoxia in lakes and reservoirs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956421/ https://www.ncbi.nlm.nih.gov/pubmed/15004318 http://dx.doi.org/10.1100/tsw.2004.5 |
work_keys_str_mv | AT nurnberggertrudk quantifiedhypoxiaandanoxiainlakesandreservoirs |