Cargando…

External validation of a prediction model for surgical site infection after thoracolumbar spine surgery in a Western European cohort

BACKGROUND: A prediction model for surgical site infection (SSI) after spine surgery was developed in 2014 by Lee et al. This model was developed to compute an individual estimate of the probability of SSI after spine surgery based on the patient’s comorbidity profile and invasiveness of surgery. Be...

Descripción completa

Detalles Bibliográficos
Autores principales: Janssen, Daniël M. C., van Kuijk, Sander M. J., d’Aumerie, Boudewijn B., Willems, Paul C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956755/
https://www.ncbi.nlm.nih.gov/pubmed/29769095
http://dx.doi.org/10.1186/s13018-018-0821-2
Descripción
Sumario:BACKGROUND: A prediction model for surgical site infection (SSI) after spine surgery was developed in 2014 by Lee et al. This model was developed to compute an individual estimate of the probability of SSI after spine surgery based on the patient’s comorbidity profile and invasiveness of surgery. Before any prediction model can be validly implemented in daily medical practice, it should be externally validated to assess how the prediction model performs in patients sampled independently from the derivation cohort. METHODS: We included 898 consecutive patients who underwent instrumented thoracolumbar spine surgery. To quantify overall performance using Nagelkerke’s R(2) statistic, the discriminative ability was quantified as the area under the receiver operating characteristic curve (AUC). We computed the calibration slope of the calibration plot, to judge prediction accuracy. RESULTS: Sixty patients developed an SSI. The overall performance of the prediction model in our population was poor: Nagelkerke’s R(2) was 0.01. The AUC was 0.61 (95% confidence interval (CI) 0.54–0.68). The estimated slope of the calibration plot was 0.52. CONCLUSIONS: The previously published prediction model showed poor performance in our academic external validation cohort. To predict SSI after instrumented thoracolumbar spine surgery for the present population, a better fitting prediction model should be developed.