Cargando…
Accelerated Autophagy of Cecal Ligation and Puncture-Induced Myocardial Dysfunction and Its Correlation with Mammalian Target of Rapamycin Pathway in Rats
BACKGROUND: Recent studies have indicated that autophagy is involved in sepsis-induced myocardial dysfunction. This study aimed to investigate the change of autophagy in cecal ligation and puncture (CLP)-induced myocardium dysfunction and its relationship with mammalian target of rapamycin (mTOR) pa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956769/ https://www.ncbi.nlm.nih.gov/pubmed/29722337 http://dx.doi.org/10.4103/0366-6999.231522 |
Sumario: | BACKGROUND: Recent studies have indicated that autophagy is involved in sepsis-induced myocardial dysfunction. This study aimed to investigate the change of autophagy in cecal ligation and puncture (CLP)-induced myocardium dysfunction and its relationship with mammalian target of rapamycin (mTOR) pathway. METHODS: Totally, 12 rats were randomly divided into CLP group or sham-operated (SHAM) group. Cardiac tissues were harvested 18 h after CLP or sham operation. Pathology was detected by hematoxylin and eosin staining, cardiac functions by echocardiography, distribution of microtubule-associated protein light chain 3 type II (LC3II) by immunohistochemical staining, and autophagic vacuoles by transmission electron microscopy. Moreover, phosphorylation of mTOR (p-mTOR), phosphorylation of S6 kinase-1 (PS6K1), and LC3II and p62 expression were measured by western blotting. Pearson's correlation coefficient was used to analyze the correlation of two parameters. RESULTS: The results by pathology and echocardiography revealed that there was obvious myocardial injury in CLP rats (left ventricle ejection fraction: SHAM 0.76 ± 0.06 vs. CLP 0.59 ± 0.11, P < 0.01; fractional shortening: SHAM 0.51 ± 0.09 vs. CLP 0.37 ± 0.06, P < 0.05). We also found that the autophagy process was elevated by CLP, the ratio of LC3II/LC3I was increased (P < 0.05) while the expression of p62 was decreased (P < 0.05) in the CLP rats, and there were also more autophagosomes and autolysosomes in the CLP rats. Furthermore, the mTOR pathway in CLP myocardium was inhibited when compared with the sham-operated rats; p-mTOR (P < 0.01) and PS6K1 (P < 0.05) were both significantly suppressed following CLP challenge. Interestingly, we found that the mTOR pathway was closely correlated with the autophagy processes. In our study, while p-mTOR in the myocardium was significantly correlated with p62 (r = 0.66, P = 0.02), PS6K1 was significantly positively correlated with p62 (r = 0.70, P = 0.01) and negatively correlated with LC3II (r = −0.71, P = 0.01). CONCLUSIONS: The autophagy process in the myocardium was accelerated in CLP rats, which was closely correlated with the inhibition of the mTOR pathway. |
---|