Cargando…

Live neighbor-joining

BACKGROUND: In phylogenetic reconstruction the result is a tree where all taxa are leaves and internal nodes are hypothetical ancestors. In a live phylogeny, both ancestral and living taxa may coexist, leading to a tree where internal nodes may be living taxa. The well-known Neighbor-Joining heurist...

Descripción completa

Detalles Bibliográficos
Autores principales: Telles, Guilherme P., Araújo, Graziela S., Walter, Maria E. M. T., Brigido, Marcelo M., Almeida, Nalvo F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956842/
https://www.ncbi.nlm.nih.gov/pubmed/29769032
http://dx.doi.org/10.1186/s12859-018-2162-x
Descripción
Sumario:BACKGROUND: In phylogenetic reconstruction the result is a tree where all taxa are leaves and internal nodes are hypothetical ancestors. In a live phylogeny, both ancestral and living taxa may coexist, leading to a tree where internal nodes may be living taxa. The well-known Neighbor-Joining heuristic is largely used for phylogenetic reconstruction. RESULTS: We present Live Neighbor-Joining, a heuristic for building a live phylogeny. We have investigated Live Neighbor-Joining on datasets of viral genomes, a plausible scenario for its application, which allowed the construction of alternative hypothesis for the relationships among virus that embrace both ancestral and descending taxa. We also applied Live Neighbor-Joining on a set of bacterial genomes and to sets of images and texts. Non-biological data may be better explored visually when their relationship in terms of content similarity is represented by means of a phylogeny. CONCLUSION: Our experiments have shown interesting alternative phylogenetic hypothesis for RNA virus genomes, bacterial genomes and alternative relationships among images and texts, illustrating a wide range of scenarios where Live Neighbor-Joining may be used.