Cargando…

The Bethe–Salpeter formalism with polarisable continuum embedding: reconciling linear-response and state-specific features

The Bethe–Salpeter equation (BSE) formalism has been recently shown to be a valuable alternative to time-dependent density functional theory (TD-DFT) with the same computing time scaling with system size. In particular, problematic transitions for TD-DFT such as charge-transfer, Rydberg and cyanine-...

Descripción completa

Detalles Bibliográficos
Autores principales: Duchemin, Ivan, Guido, Ciro A., Jacquemin, Denis, Blase, Xavier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956976/
https://www.ncbi.nlm.nih.gov/pubmed/29896384
http://dx.doi.org/10.1039/c8sc00529j
Descripción
Sumario:The Bethe–Salpeter equation (BSE) formalism has been recently shown to be a valuable alternative to time-dependent density functional theory (TD-DFT) with the same computing time scaling with system size. In particular, problematic transitions for TD-DFT such as charge-transfer, Rydberg and cyanine-like excitations were shown to be accurately described with BSE. We demonstrate here that combining the BSE formalism with the polarisable continuum model (PCM) allows us to include simultaneously linear-response and state-specific contributions to solvatochromism. This is confirmed by exploring transitions of various natures (local, charge-transfer, etc.) in a series of solvated molecules (acrolein, indigo, p-nitro-aniline, donor–acceptor complexes, etc.) for which we compare BSE solvatochromic shifts to those obtained by linear-response and state-specific TD-DFT implementations. Such a remarkable and unique feature is particularly valuable for the study of solvent effects on excitations presenting a hybrid localised/charge-transfer character.