Cargando…

Development and characterization of a nanoemulsion containing propranolol for topical delivery

BACKGROUND: Propranolol (PPN) is a therapeutic option for the treatment of infantile hemangiomas. This study aimed at the development of nanoemulsion (NE) containing 1% PPN, characterization of the system, and safety studies based on ex vivo permeation, cytotoxicity, and biodistribution in vivo. MET...

Descripción completa

Detalles Bibliográficos
Autores principales: Zanela da Silva Marques, Tatiana, Santos-Oliveira, Ralph, Betzler de Oliveira de Siqueira, Luciana, Cardoso, Verônica da Silva, de Freitas, Zaida Maria Faria, Barros, Rita de Cássia da Silva Ascenção, Villa, Ana Lúcia Vazquez, Monteiro, Mariana Sato de Souza de Bustamante, dos Santos, Elisabete Pereira, Ricci-Junior, Eduardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957063/
https://www.ncbi.nlm.nih.gov/pubmed/29785109
http://dx.doi.org/10.2147/IJN.S164404
Descripción
Sumario:BACKGROUND: Propranolol (PPN) is a therapeutic option for the treatment of infantile hemangiomas. This study aimed at the development of nanoemulsion (NE) containing 1% PPN, characterization of the system, and safety studies based on ex vivo permeation, cytotoxicity, and biodistribution in vivo. METHODS: The formulation was developed and characterized in relation to the droplet size, polydispersity index (PDI), pH, zeta potential, and electronic microscopy. Ex vivo permeation studies were used to evaluate the cutaneous retention of PPN in the epidermis and dermis. Cytotoxicity studies were performed in fibroblasts, macrophages, and keratinocytes. In vivo biodistribution assay of the formulations was performed by means of labeling with technetium-99m. RESULTS: NE1 exhibited droplet size of 26 nm, PDI <0.4, pH compatible with the skin, and zeta potential of −20 mV, which possibly contributes to the stability. Electron microscopy showed that the NE presented droplets of nanometric size and spherical shape. NE1 provided excellent stability for PPN. In the ex vivo cutaneous permeation assay, the NE provided satisfactory PPN retention particularly in the dermis, which is the site of drug action. In addition, NE1 promoted cutaneous permeation of the PPN in small amount. In vivo biodistribution showed that the radiolabeled formulation remained in the skin and a small amount reached the bloodstream. NE1 presented low cytotoxicity to fibroblasts, macrophages, and keratinocytes in the concentrations evaluated in the cytotoxicity assay. CONCLUSION: We concluded that the formulation is safe for skin administration; however, cutaneous irritation studies should be performed to confirm the safety of the formulation before clinical studies in patients with infantile hemangiomas.