Cargando…

An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning

Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comf...

Descripción completa

Detalles Bibliográficos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IEEE 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957264/
https://www.ncbi.nlm.nih.gov/pubmed/29805919
http://dx.doi.org/10.1109/JTEHM.2018.2822681
_version_ 1783324033890123776
collection PubMed
description Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is one of the key issues which should be addressed for wearable devices. The SWA was developed by integrating a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process, and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user’s forearm, drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different hand movements, and their performances were appraised by classification complexity estimating algorithms and principal components analysis. According to the verification results, all nine gestures can be successfully identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was implemented for hand rehabilitation training purpose. Correspondingly, user’s hand movement intentions were extracted and converted into a series of commands which were used to drive motors assembled inside the dexterous robot hand. As a result, the dexterous robot hand can mimic the user’s gesture in a real-time manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process for the patients after stroke.
format Online
Article
Text
id pubmed-5957264
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher IEEE
record_format MEDLINE/PubMed
spelling pubmed-59572642018-05-25 An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning IEEE J Transl Eng Health Med Article Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is one of the key issues which should be addressed for wearable devices. The SWA was developed by integrating a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process, and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user’s forearm, drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different hand movements, and their performances were appraised by classification complexity estimating algorithms and principal components analysis. According to the verification results, all nine gestures can be successfully identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was implemented for hand rehabilitation training purpose. Correspondingly, user’s hand movement intentions were extracted and converted into a series of commands which were used to drive motors assembled inside the dexterous robot hand. As a result, the dexterous robot hand can mimic the user’s gesture in a real-time manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process for the patients after stroke. IEEE 2018-05-08 /pmc/articles/PMC5957264/ /pubmed/29805919 http://dx.doi.org/10.1109/JTEHM.2018.2822681 Text en 2168-2372 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
spellingShingle Article
An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning
title An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning
title_full An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning
title_fullStr An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning
title_full_unstemmed An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning
title_short An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning
title_sort iot-enabled stroke rehabilitation system based on smart wearable armband and machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957264/
https://www.ncbi.nlm.nih.gov/pubmed/29805919
http://dx.doi.org/10.1109/JTEHM.2018.2822681
work_keys_str_mv AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT aniotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning
AT iotenabledstrokerehabilitationsystembasedonsmartwearablearmbandandmachinelearning