Cargando…
Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig
There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to stu...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957346/ https://www.ncbi.nlm.nih.gov/pubmed/29772011 http://dx.doi.org/10.1371/journal.ppat.1007017 |
_version_ | 1783324044373786624 |
---|---|
author | Tungatt, Katie Dolton, Garry Morgan, Sophie B. Attaf, Meriem Fuller, Anna Whalley, Thomas Hemmink, Johanneke D. Porter, Emily Szomolay, Barbara Montoya, Maria Hammond, John A. Miles, John J. Cole, David K. Townsend, Alain Bailey, Mick Rizkallah, Pierre J. Charleston, Bryan Tchilian, Elma Sewell, Andrew K. |
author_facet | Tungatt, Katie Dolton, Garry Morgan, Sophie B. Attaf, Meriem Fuller, Anna Whalley, Thomas Hemmink, Johanneke D. Porter, Emily Szomolay, Barbara Montoya, Maria Hammond, John A. Miles, John J. Cole, David K. Townsend, Alain Bailey, Mick Rizkallah, Pierre J. Charleston, Bryan Tchilian, Elma Sewell, Andrew K. |
author_sort | Tungatt, Katie |
collection | PubMed |
description | There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens. |
format | Online Article Text |
id | pubmed-5957346 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59573462018-05-31 Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig Tungatt, Katie Dolton, Garry Morgan, Sophie B. Attaf, Meriem Fuller, Anna Whalley, Thomas Hemmink, Johanneke D. Porter, Emily Szomolay, Barbara Montoya, Maria Hammond, John A. Miles, John J. Cole, David K. Townsend, Alain Bailey, Mick Rizkallah, Pierre J. Charleston, Bryan Tchilian, Elma Sewell, Andrew K. PLoS Pathog Research Article There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens. Public Library of Science 2018-05-17 /pmc/articles/PMC5957346/ /pubmed/29772011 http://dx.doi.org/10.1371/journal.ppat.1007017 Text en © 2018 Tungatt et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tungatt, Katie Dolton, Garry Morgan, Sophie B. Attaf, Meriem Fuller, Anna Whalley, Thomas Hemmink, Johanneke D. Porter, Emily Szomolay, Barbara Montoya, Maria Hammond, John A. Miles, John J. Cole, David K. Townsend, Alain Bailey, Mick Rizkallah, Pierre J. Charleston, Bryan Tchilian, Elma Sewell, Andrew K. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig |
title | Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig |
title_full | Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig |
title_fullStr | Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig |
title_full_unstemmed | Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig |
title_short | Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig |
title_sort | induction of influenza-specific local cd8 t-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the babraham inbred pig |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957346/ https://www.ncbi.nlm.nih.gov/pubmed/29772011 http://dx.doi.org/10.1371/journal.ppat.1007017 |
work_keys_str_mv | AT tungattkatie inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT doltongarry inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT morgansophieb inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT attafmeriem inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT fulleranna inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT whalleythomas inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT hemminkjohanneked inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT porteremily inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT szomolaybarbara inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT montoyamaria inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT hammondjohna inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT milesjohnj inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT coledavidk inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT townsendalain inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT baileymick inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT rizkallahpierrej inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT charlestonbryan inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT tchilianelma inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig AT sewellandrewk inductionofinfluenzaspecificlocalcd8tcellsintherespiratorytractafteraerosoldeliveryofvaccineantigenorvirusinthebabrahaminbredpig |