Cargando…

Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart

Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Xing, Khalil, Hadi, Kanisicak, Onur, Boyer, Justin G., Vagnozzi, Ronald J., Maliken, Bryan D., Sargent, Michelle A., Prasad, Vikram, Valiente-Alandi, Iñigo, Blaxall, Burns C., Molkentin, Jeffery D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957472/
https://www.ncbi.nlm.nih.gov/pubmed/29664017
http://dx.doi.org/10.1172/JCI98215
Descripción
Sumario:Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle α-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle α-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar.