Cargando…

Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach

Atom-by-atom engineering of nanomaterials requires atomic-level knowledge of the size evolution mechanism of nanoparticles, which remains one of the greatest mysteries in nanochemistry. Here we reveal atomic-level dynamics of size evolution reaction of molecular-like nanoparticles, i.e., nanocluster...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Qiaofeng, Fung, Victor, Sun, Cheng, Huang, Sida, Chen, Tiankai, Jiang, De-en, Lee, Jim Yang, Xie, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958061/
https://www.ncbi.nlm.nih.gov/pubmed/29773785
http://dx.doi.org/10.1038/s41467-018-04410-6
Descripción
Sumario:Atom-by-atom engineering of nanomaterials requires atomic-level knowledge of the size evolution mechanism of nanoparticles, which remains one of the greatest mysteries in nanochemistry. Here we reveal atomic-level dynamics of size evolution reaction of molecular-like nanoparticles, i.e., nanoclusters (NCs) by delicate mass spectrometry (MS) analyses. The model size-conversion reaction is [Au(23)(SR)(16)](−) → [Au(25)(SR)(18)](−) (SR = thiolate ligand). We demonstrate that such isoelectronic (valence electron count is 8 in both NCs) size-conversion occurs by a surface-motif-exchange-induced symmetry-breaking core structure transformation mechanism, surfacing as a definitive reaction of [Au(23)(SR)(16)](−) + 2 [Au(2)(SR)(3)](−) → [Au(25)(SR)(18)](−) + 2 [Au(SR)(2)](−). The detailed tandem MS analyses further suggest the bond susceptibility hierarchies in feed and final Au NCs, shedding mechanistic light on cluster reaction dynamics at atomic level. The MS-based mechanistic approach developed in this study also opens a complementary avenue to X-ray crystallography to reveal size evolution kinetics and dynamics.