Cargando…
Computational identification of specific genes for glioblastoma stem-like cells identity
Glioblastoma, the most malignant brain cancer, contains self-renewing, stem-like cells that sustain tumor growth and therapeutic resistance. Identifying genes promoting stem-like cell differentiation might unveil targets for novel treatments. To detect them, here we apply SWIM – a software able to u...
Autores principales: | Fiscon, Giulia, Conte, Federica, Licursi, Valerio, Nasi, Sergio, Paci, Paola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958093/ https://www.ncbi.nlm.nih.gov/pubmed/29773872 http://dx.doi.org/10.1038/s41598-018-26081-5 |
Ejemplares similares
-
Publisher Correction: Computational identification of specific genes for glioblastoma stem-like cells identity
por: Fiscon, Giulia, et al.
Publicado: (2018) -
MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis
por: Licursi, Valerio, et al.
Publicado: (2019) -
SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines
por: Fiscon, Giulia, et al.
Publicado: (2018) -
Identification of Potential Repurposable Drugs in Alzheimer’s Disease Exploiting a Bioinformatics Analysis
por: Fiscon, Giulia, et al.
Publicado: (2022) -
The role of FOSL1 in stem-like cell reprogramming processes
por: Pecce, Valeria, et al.
Publicado: (2021)