Cargando…

Nanojunction Effects on Water Flow in Carbon Nanotubes

We report on the results of extensive molecular dynamics simulation of water imbibition in carbon nanotubes (CNTs), connected together by converging or diverging nanojunctions in various configurations. The goal of the study is to understand the effect of the nanojunctions on the interface motion, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebrahimi, Fatemeh, Ramazani, Farzaneh, Sahimi, Muhammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958144/
https://www.ncbi.nlm.nih.gov/pubmed/29773862
http://dx.doi.org/10.1038/s41598-018-26072-6
Descripción
Sumario:We report on the results of extensive molecular dynamics simulation of water imbibition in carbon nanotubes (CNTs), connected together by converging or diverging nanojunctions in various configurations. The goal of the study is to understand the effect of the nanojunctions on the interface motion, as well as the differences between what we study and water imbibition in microchannels. While the dynamics of water uptake in the entrance CNT is the same as that of imbibition in straight CNTs, with the main source of energy dissipation being the friction at the entrance, water uptake in the exit CNT is more complex due to significant energy loss in the nanojunctions. We derive an approximate but accurate expression for the pressure drop in the nanojunction. A remarkable difference between dynamic wetting of nano- and microjunctions is that, whereas water absorption time in the latter depends only on the ratios of the radii and of the lengths of the channels, the same is not true about the former, which is shown to be strongly dependent upon the size of each segment of the nanojunction. Interface pinning-depinning also occurs at the convex edges.