Cargando…

Aberrant expression of miR-153 is associated with the poor prognosis of cervical cancer

Previous studies have demonstrated that microRNAs (miRNAs) are frequently dysregulated in tumors and are associated with the initiation and progression of various types of cancer. miR-153 has been previously shown to have an anti-tumor effect in the majority of cancer types. However, to date, the ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Li, Lai, Xiaojing, Yuan, Changjin, Lv, Xiuwei, Yu, Tao, He, Wenyu, Liu, Jiaoping, Zhang, Haiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958641/
https://www.ncbi.nlm.nih.gov/pubmed/29805649
http://dx.doi.org/10.3892/ol.2018.8475
Descripción
Sumario:Previous studies have demonstrated that microRNAs (miRNAs) are frequently dysregulated in tumors and are associated with the initiation and progression of various types of cancer. miR-153 has been previously shown to have an anti-tumor effect in the majority of cancer types. However, to date, the expression status and function of miR-153 in cervical cancer (CC) remains unclear. In the present study, the expression of miR-153 in CC tissues and cell lines was examined, revealing that the expression of miR-153 was markedly downregulated in the CC tissues and cell lines investigated, when compared with matched noncancerous tissues and normal cervical epithelial cell line. Furthermore, ectopic expression of miR-153 by miR-153 mimic inhibited cell proliferation; however, transfection with the miR-153 inhibitor promoted the cell proliferation in CC cell lines. Finally, the results showed that the downregulation of miR-153 was associated with poor 5-year over survival in CC patients and it could be regarded as an independent biomarker to predict the prognosis of CC patients. Collectively, these results indicated that miR-153 may function as a tumor suppressor in CC, and it may be a potential novel therapeutic target for CC.