Cargando…
Evaluation of the prognostic and physiological functions of death associated protein kinase 1 in breast cancer
Death associated protein kinase 1 (DAPK1) is a notable serine/threonine kinase involved in the regulation of multiple cellular pathways, including apoptosis and autophagy. Although DAPK1 is usually considered to be a tumor suppressor, it was previously reported to promote the viability of p53 mutant...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958705/ https://www.ncbi.nlm.nih.gov/pubmed/29805560 http://dx.doi.org/10.3892/ol.2018.8439 |
Sumario: | Death associated protein kinase 1 (DAPK1) is a notable serine/threonine kinase involved in the regulation of multiple cellular pathways, including apoptosis and autophagy. Although DAPK1 is usually considered to be a tumor suppressor, it was previously reported to promote the viability of p53 mutant cancer cell lines and possess physiological oncogenic functions in breast cancer. However, the ability of endogenous DAPK1 to suppress breast cancer cell mobility has not been assessed. In the present study, the prognostic function of DAPK1 in a Chinese patient cohort was evaluated, and no significant association was observed between DAPK1 expression and patient survival or lymph node metastasis. In order to investigate the physiological function of endogenous DAPK1, stable inducible DAPK1 knockdown MCF7 and MDA-MB-231 cell lines were established. Consistent with previous studies, endogenous DAPK1 only regulated cell viability in p53 mutant MDA-MB-231 cells. However, knockdown of DAPK1 did not significantly affect cell motility of either MCF7 or MDA-MB-231 cells. Altogether, these results further explored the function of endogenous DAPK1 in breast cancer and may shed light in understanding the molecular signaling pathways regulating the physiological function of DAPK1. |
---|