Cargando…

Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS(2)/WS(2) van der Waals Heterobilayer

[Image: see text] van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band a...

Descripción completa

Detalles Bibliográficos
Autores principales: Pak, Sangyeon, Lee, Juwon, Lee, Young-Woo, Jang, A-Rang, Ahn, Seongjoon, Ma, Kyung Yeol, Cho, Yuljae, Hong, John, Lee, Sanghyo, Jeong, Hu Young, Im, Hyunsik, Shin, Hyeon Suk, Morris, Stephen M., Cha, SeungNam, Sohn, Jung Inn, Kim, Jong Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959243/
https://www.ncbi.nlm.nih.gov/pubmed/28832158
http://dx.doi.org/10.1021/acs.nanolett.7b02513
Descripción
Sumario:[Image: see text] van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band alignments and the unique interlayer coupling that occurs at the heterojunction interface. However, despite these attractive features, a fundamental understanding of the underlying physics accounting for the effect of interlayer coupling on the interactions between electrons, photons, and phonons in the stacked heterobilayer is still lacking. Here, we demonstrate a detailed analysis of the strain-dependent excitonic behavior of an epitaxially grown MoS(2)/WS(2) vertical heterostructure under uniaxial tensile and compressive strain that enables the interlayer interactions to be modulated along with the electronic band structure. We find that the strain-modulated interlayer coupling directly affects the characteristic combined vibrational and excitonic properties of each monolayer in the heterobilayer. It is further revealed that the relative photoluminescence intensity ratio of WS(2) to MoS(2) in our heterobilayer increases monotonically with tensile strain and decreases with compressive strain. We attribute the strain-dependent emission behavior of the heterobilayer to the modulation of the band structure for each monolayer, which is dictated by the alterations in the band gap transitions. These findings present an important pathway toward designing heterostructures and flexible devices.