Cargando…

Discrete taxa of saprotrophic fungi respire different ages of carbon from Antarctic soils

Different organic compounds have distinct residence times in soil and are degraded by specific taxa of saprotrophic fungi. It hence follows that specific fungal taxa should respire carbon of different ages from these compounds to the atmosphere. Here, we test whether this is the case by radiocarbon...

Descripción completa

Detalles Bibliográficos
Autores principales: Newsham, Kevin K., Garnett, Mark H., Robinson, Clare H., Cox, Filipa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959846/
https://www.ncbi.nlm.nih.gov/pubmed/29777126
http://dx.doi.org/10.1038/s41598-018-25877-9
Descripción
Sumario:Different organic compounds have distinct residence times in soil and are degraded by specific taxa of saprotrophic fungi. It hence follows that specific fungal taxa should respire carbon of different ages from these compounds to the atmosphere. Here, we test whether this is the case by radiocarbon ((14)C) dating CO(2) evolved from two gamma radiation-sterilised maritime Antarctic soils inoculated with pure single cultures of four fungi. We show that a member of the Helotiales, which accounted for 41–56% of all fungal sequences in the two soils, respired soil carbon that was aged up to 1,200 years BP and which was 350–400 years older than that respired by the other three taxa. Analyses of the enzyme profile of the Helotialean fungus and the fluxes and δ(13)C values of CO(2) that it evolved suggested that its release of old carbon from soil was associated with efficient cellulose decomposition. Our findings support suggestions that increases in the ages of carbon respired from warmed soils may be caused by changes to the abundances or activities of discrete taxa of microbes, and indicate that the loss of old carbon from soils is driven by specific fungal taxa.