Cargando…
Yokukansan, a Traditional Japanese Medicine, Enhances the Glutamate Transporter GLT-1 Function in Cultured Rat Cortical Astrocytes
Astrocytes carry two glutamate transporters—GLAST and GLT-1—the latter of which is responsible for >90% of glutamate uptake activity in the brain; however, under culture conditions, the GLT-1 expression in astrocytes is exceedingly low, as is the glutamate uptake activity mediated by GLT-1. This...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960509/ https://www.ncbi.nlm.nih.gov/pubmed/29853967 http://dx.doi.org/10.1155/2018/6804017 |
Sumario: | Astrocytes carry two glutamate transporters—GLAST and GLT-1—the latter of which is responsible for >90% of glutamate uptake activity in the brain; however, under culture conditions, the GLT-1 expression in astrocytes is exceedingly low, as is the glutamate uptake activity mediated by GLT-1. This study aimed to elucidate the effects of yokukansan (YKS) in relation to the GLT-1-mediated regulation of extracellular glutamate concentrations. Thus, we treated cultured astrocytes with tumor necrosis factor-α (TNF-α) and dibutyryl-cAMP (dBcAMP) (hereinafter, referred to as “TA”) to increase GLT-1 expression and then functionally examined how YKS would affect glutamate uptake ability derived from GLT-1. Contrary to expectations, although the TA treatments did not affect the uptake activity, YKS significantly augmented it. Conversely, GLAST-derived glutamate uptake was significantly reduced by TA treatments but was unaffected by YKS. Subsequently, we analyzed the GLT-1 protein and mRNA levels and found that TA treatments had significantly increased them, which were then further augmented by YKS. These findings suggest that YKS enhances GLT-1-derived glutamate transport functions in TA-treated cultured astrocytes and that this process entails increased GLT-1 protein and mRNA levels. This type of mechanism may contribute to the YKS-mediated regulation of extracellular glutamate concentrations. |
---|