Cargando…

Evaluation of Cytotoxic and Genotoxic Effects of Extremely Low-frequency Electromagnetic Field on Mesenchymal Stromal Cells

BACKGROUND: Interest in the use of extremely low-frequency (ELF) electromagnetic field (EMF) for the treatment of pain and inflammation is increasing due to the ability of this promising therapy to compete with pharmaceuticals without the adverse effects caused by drugs. However, there continues to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ross, Christina L, Pettenati, Mark J, Procita, Joseph, Cathey, Lisa, George, Sunil K, Almeida-Porada, Graca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960853/
https://www.ncbi.nlm.nih.gov/pubmed/29796339
http://dx.doi.org/10.1177/2164956118777472
Descripción
Sumario:BACKGROUND: Interest in the use of extremely low-frequency (ELF) electromagnetic field (EMF) for the treatment of pain and inflammation is increasing due to the ability of this promising therapy to compete with pharmaceuticals without the adverse effects caused by drugs. However, there continues to be concerns regarding cytotoxic and genotoxic effects that may occur as a result of exposure to EMF. OBJECTIVE: To investigate this concern, we tested the effect of our known therapeutic 5 Hz, 0.4 milliTesla (mT) EMF on a human mesenchymal stromal cell (hMSC) line to determine whether ELF-EMF exposure would cause cytotoxic or genotoxic effects. METHODS: Treated samples along with controls were exposed to 5 Hz, 0.4 mT ELF-EMF for 20 min/day, 3×/week for 2 weeks and then assayed for cell viability, proliferation rates, and chromosome breaks. RESULTS: Cytogenetic analysis of the viability and proliferation rates along with analysis of morphological genome stability showed no cytotoxicity, and no chromosome breaks per karyotype analysis—therefore no genotoxicity. CONCLUSION: Exposure to an ELF-EMF of 5 Hz, 0.4 mT for 20 min/day, 3×/week for 2 weeks does not cause cytotoxic or genotoxic effects in hMSCs.