Cargando…
Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits
INTRODUCTION: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs) with low molecular weight hyaluronic acid (HA) could promote regeneration of massive cartilage in rabbits. MATERIAL AND METHODS: The SD MSCs were harveste...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University Library System, University of Pittsburgh
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960916/ https://www.ncbi.nlm.nih.gov/pubmed/29805856 http://dx.doi.org/10.5195/cajgh.2013.97 |
_version_ | 1783324664125194240 |
---|---|
author | Ogay, Vyacheslav Karzhauov, Miras Mukhambetova, Ainur Raimagambetov, Eric Batpenov, Nurlan |
author_facet | Ogay, Vyacheslav Karzhauov, Miras Mukhambetova, Ainur Raimagambetov, Eric Batpenov, Nurlan |
author_sort | Ogay, Vyacheslav |
collection | PubMed |
description | INTRODUCTION: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs) with low molecular weight hyaluronic acid (HA) could promote regeneration of massive cartilage in rabbits. MATERIAL AND METHODS: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek). The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml) were suspended in 0.5% low molecular weight HA (0.15 ml) and injected into the left knee, and HA solution (0.30 ml) alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. RESULTS: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC-treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. CONCLUSION: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits. |
format | Online Article Text |
id | pubmed-5960916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | University Library System, University of Pittsburgh |
record_format | MEDLINE/PubMed |
spelling | pubmed-59609162018-05-25 Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits Ogay, Vyacheslav Karzhauov, Miras Mukhambetova, Ainur Raimagambetov, Eric Batpenov, Nurlan Cent Asian J Glob Health Articles INTRODUCTION: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs) with low molecular weight hyaluronic acid (HA) could promote regeneration of massive cartilage in rabbits. MATERIAL AND METHODS: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek). The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml) were suspended in 0.5% low molecular weight HA (0.15 ml) and injected into the left knee, and HA solution (0.30 ml) alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. RESULTS: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC-treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. CONCLUSION: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits. University Library System, University of Pittsburgh 2014-01-24 /pmc/articles/PMC5960916/ /pubmed/29805856 http://dx.doi.org/10.5195/cajgh.2013.97 Text en New articles in this journal are licensed under a Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/) . |
spellingShingle | Articles Ogay, Vyacheslav Karzhauov, Miras Mukhambetova, Ainur Raimagambetov, Eric Batpenov, Nurlan Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits |
title | Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits |
title_full | Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits |
title_fullStr | Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits |
title_full_unstemmed | Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits |
title_short | Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits |
title_sort | intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960916/ https://www.ncbi.nlm.nih.gov/pubmed/29805856 http://dx.doi.org/10.5195/cajgh.2013.97 |
work_keys_str_mv | AT ogayvyacheslav intraarticularinjectionofsynoviumderivedmesenchymalstemcellsandhyaluronicacidpromoteregenerationofmassivecartilagedefectsinrabbits AT karzhauovmiras intraarticularinjectionofsynoviumderivedmesenchymalstemcellsandhyaluronicacidpromoteregenerationofmassivecartilagedefectsinrabbits AT mukhambetovaainur intraarticularinjectionofsynoviumderivedmesenchymalstemcellsandhyaluronicacidpromoteregenerationofmassivecartilagedefectsinrabbits AT raimagambetoveric intraarticularinjectionofsynoviumderivedmesenchymalstemcellsandhyaluronicacidpromoteregenerationofmassivecartilagedefectsinrabbits AT batpenovnurlan intraarticularinjectionofsynoviumderivedmesenchymalstemcellsandhyaluronicacidpromoteregenerationofmassivecartilagedefectsinrabbits |