Cargando…
A Crowdsourcing Framework for Medical Data Sets
Crowdsourcing services like Amazon Mechanical Turk allow researchers to ask questions to crowds of workers and quickly receive high quality labeled responses. However, crowds drawn from the general public are not suitable for labeling sensitive and complex data sets, such as medical records, due to...
Autores principales: | Ye, Cheng, Coco, Joseph, Epishova, Anna, Hajaj, Chen, Bogardus, Henry, Novak, Laurie, Denny, Joshua, Vorobeychik, Yevgeniy, Lasko, Thomas, Malin, Bradley, Fabbri, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961774/ https://www.ncbi.nlm.nih.gov/pubmed/29888085 |
Ejemplares similares
-
Re-identification of individuals in genomic datasets using public face images
por: Venkatesaramani, Rajagopal, et al.
Publicado: (2021) -
Controlling the signal: Practical privacy protection of genomic data sharing through Beacon services
por: Wan, Zhiyu, et al.
Publicado: (2017) -
Scalable Iterative Classification for Sanitizing Large-Scale Datasets
por: Li, Bo, et al.
Publicado: (2017) -
A Game Theoretic Framework for Analyzing Re-Identification Risk
por: Wan, Zhiyu, et al.
Publicado: (2015) -
Enabling tradeoffs in privacy and utility in genomic data Beacons and summary statistics
por: Venkatesaramani, Rajagopal, et al.
Publicado: (2023)