Cargando…
Incorporating Protein Dynamics Through Ensemble Docking in Machine Learning Models to Predict Drug Binding
Drug discovery is an expensive, lengthy, and sometimes dangerous process. The ability to make accurate computational predictions of drug binding would greatly improve the cost-effectiveness and safety of drug discovery and development. This study incorporates ensemble docking, the use of multiple pr...
Autores principales: | Alghamedy, Fatemah, Bopaiah, Jeevith, Jones, Derek, Zhang, Xiaofei, Weiss, Heidi L., Ellingson, Sally R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961778/ https://www.ncbi.nlm.nih.gov/pubmed/29888034 |
Ejemplares similares
-
Polypharmacology Within the Full Kinome: a Machine Learning Approach
por: Jones, Derek, et al.
Publicado: (2018) -
Machine Learning-Based Multimodel Computing for Medical Imaging for Classification and Detection of Alzheimer Disease
por: Alghamedy, Fatemah H., et al.
Publicado: (2022) -
Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem
por: Mohammadi, Sara, et al.
Publicado: (2022) -
Machine Learning Generation of Dynamic Protein Conformational Ensembles
por: Zheng, Li-E, et al.
Publicado: (2023) -
Ensemble docking revisited
por: Korb, Oliver, et al.
Publicado: (2010)