Cargando…
Deep Learning data integration for better risk stratification models of bladder cancer
We propose an unsupervised multi-omics integration pipeline, using deep-learning autoencoder algorithm, to predict the survival subtypes in bladder cancer (BC). We used TCGA dataset comprising mRNA, miRNA and methylation to infer two survival subtypes. We then constructed a supervised classification...
Autores principales: | Poirion, Olivier B., Chaudhary, Kumardeep, Garmire, Lana X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961799/ https://www.ncbi.nlm.nih.gov/pubmed/29888072 |
Ejemplares similares
-
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
por: Poirion, Olivier B., et al.
Publicado: (2021) -
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
por: Huang, Sijia, et al.
Publicado: (2017) -
Deep Learning
Accurately Predicts Estrogen Receptor
Status in Breast Cancer Metabolomics Data
por: Alakwaa, Fadhl M., et al.
Publicado: (2017) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage
por: Poirion, Olivier, et al.
Publicado: (2018)