Cargando…
Automated Detection of Diabetic Retinopathy using Deep Learning
Diabetic retinopathy is a leading cause of blindness among working-age adults. Early detection of this condition is critical for good prognosis. In this paper, we demonstrate the use of convolutional neural networks (CNNs) on color fundus images for the recognition task of diabetic retinopathy stagi...
Autores principales: | Lam, Carson, Yi, Darvin, Guo, Margaret, Lindsey, Tony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961805/ https://www.ncbi.nlm.nih.gov/pubmed/29888061 |
Ejemplares similares
-
Automated image curation in diabetic retinopathy screening using deep learning
por: Nderitu, Paul, et al.
Publicado: (2022) -
Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy
por: Le, David, et al.
Publicado: (2020) -
Automated diabetic retinopathy screening for primary care settings using deep learning
por: Bhuiyan, Alauddin, et al.
Publicado: (2021) -
Deep learning for automated detection of neovascular leakage on ultra-widefield fluorescein angiography in diabetic retinopathy
por: Zhao, Peter Y., et al.
Publicado: (2023) -
Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy
por: Lin, Gen-Min, et al.
Publicado: (2018)