Cargando…
Adapting Word Embeddings from Multiple Domains to Symptom Recognition from Psychiatric Notes
Mental health is increasingly recognized an important topic in healthcare. Information concerning psychiatric symptoms is critical for the timely diagnosis of mental disorders, as well as for the personalization of interventions. However, the diversity and sparsity of psychiatric symptoms make it ch...
Autores principales: | Zhang, Yaoyun, Li, Hee-Jin, Wang, Jingqi, Cohen, Trevor, Roberts, Kirk, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961810/ https://www.ncbi.nlm.nih.gov/pubmed/29888086 |
Ejemplares similares
-
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
por: Zhang, Yaoyun, et al.
Publicado: (2016) -
Using word embeddings to improve the privacy of clinical notes
por: Abdalla, Mohamed, et al.
Publicado: (2020) -
Quality of word and concept embeddings in targetted biomedical domains
por: Giancani, Salvatore, et al.
Publicado: (2023) -
Word embeddings
por: Hellrich, J
Publicado: (2019) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017)