Cargando…
Comparison of Different Classifiers with Active Learning to Support Quality Control in Nucleus Segmentation in Pathology Images
Segmentation of nuclei in whole slide tissue images is a common methodology in pathology image analysis. Most segmentation algorithms are sensitive to input algorithm parameters and the characteristics of input images (tissue morphology, staining, etc.). Because there can be large variability in the...
Autores principales: | Wen, Si, Kurc, Tahsin M., Hou, Le, Saltz, Joel H., Gupta, Rajarsi R., Batiste, Rebecca, Zhao, Tianhao, Nguyen, Vu, Samaras, Dimitris, Zhu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961826/ https://www.ncbi.nlm.nih.gov/pubmed/29888078 |
Ejemplares similares
-
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020) -
A Methodology for Texture Feature-based Quality Assessment in Nucleus Segmentation of Histopathology Image
por: Wen, Si, et al.
Publicado: (2017) -
Methods for Segmentation and Classification of Digital Microscopy Tissue Images
por: Vu, Quoc Dang, et al.
Publicado: (2019) -
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020)