Cargando…
Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records
Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the e...
Autores principales: | Li, Thomas, Gao, Cheng, Yan, Chao, Osmundson, Sarah, Malin, Bradley A., Chen, You |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961831/ https://www.ncbi.nlm.nih.gov/pubmed/29888094 |
Ejemplares similares
-
Learning to Identify Severe Maternal Morbidity from Electronic Health Records
por: Gao, Cheng, et al.
Publicado: (2019) -
Predicting Length of Stay for Obstetric Patients via Electronic Medical Records
por: Gao, Cheng, et al.
Publicado: (2017) -
Leveraging Electronic Health Records to Learn Progression Path for Severe Maternal Morbidity
por: Gao, Cheng, et al.
Publicado: (2019) -
Telehealth Use in the COVID-19 Pandemic: A Retrospective Study of Prenatal Care
por: Gao, Cheng, et al.
Publicado: (2022) -
Maternal or neonatal infection: association with neonatal encephalopathy outcomes
por: Jenster, Meike, et al.
Publicado: (2014)