Cargando…

A novel mechanism for regulation of the type I IFN response by herpesvirus deconjugases

Upon infection, viral nucleic acids are recognized by germline-encoded pattern-recognition receptors (PRRs), and cytosolic retinoic acid-inducible gene I (RIG-I)-like helicases (RLHs) that initiate signaling pathways resulting in the production of type I IFN and pro-inflammatory cytokines. Binding o...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Soham, Ylä-Anttila, Päivi, Masucci, Maria G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shared Science Publishers OG 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961920/
https://www.ncbi.nlm.nih.gov/pubmed/29799549
http://dx.doi.org/10.15698/mic2018.05.633
Descripción
Sumario:Upon infection, viral nucleic acids are recognized by germline-encoded pattern-recognition receptors (PRRs), and cytosolic retinoic acid-inducible gene I (RIG-I)-like helicases (RLHs) that initiate signaling pathways resulting in the production of type I IFN and pro-inflammatory cytokines. Binding of RIG-I to viral nucleic acids triggers the formation of the RIG-I signalosome where RIG-I is ubiquitinated by the TRIM25 ligase and, with the help of 14-3-3 scaffolds, further translocated to mitochondrial anti-viral signalling proteins (MAVS). Subsequent ubiquitination-mediated events trigger transcriptional activation of the effectors of innate immunity. We have found a new mechanism by which herpesviruses interfere with this signalling pathway to favour the establishment of latency and promote virus replication. The cysteine protease encoded in the conserved N-terminal domain of the herpesvirus large tegument protein binds to 14-3-3 proteins and forms a tri-molecular complex with TRIM25, promoting the activation and autoubiquitination of the ligase. RIG-I is recruited to the complex but its ubiquitination is drastically reduced, which effectively inactivates downstream signalling and blocks the type I IFN response.