Cargando…
Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning
We present a robust deep learning framework for the automatic localisation of cone photoreceptor cells in Adaptive Optics Scanning Light Ophthalmoscope (AOSLO) split-detection images. Monitoring cone photoreceptors with AOSLO imaging grants an excellent view into retinal structure and health, provid...
Autores principales: | Davidson, Benjamin, Kalitzeos, Angelos, Carroll, Joseph, Dubra, Alfredo, Ourselin, Sebastien, Michaelides, Michel, Bergeles, Christos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962538/ https://www.ncbi.nlm.nih.gov/pubmed/29784939 http://dx.doi.org/10.1038/s41598-018-26350-3 |
Ejemplares similares
-
Fast adaptive optics scanning light ophthalmoscope retinal montaging
por: Davidson, Benjamin, et al.
Publicado: (2018) -
Reliability and Repeatability of Cone Density Measurements in Patients With Stargardt Disease and RPGR-Associated Retinopathy
por: Tanna, Preena, et al.
Publicado: (2017) -
Photoreceptor Structure in GNAT2-Associated Achromatopsia
por: Georgiou, Michalis, et al.
Publicado: (2020) -
Automatic cone photoreceptor segmentation using graph theory and dynamic programming
por: Chiu, Stephanie J., et al.
Publicado: (2013) -
Correlating Photoreceptor Mosaic Structure to Clinical Findings in Stargardt Disease
por: Razeen, Moataz M., et al.
Publicado: (2016)