Cargando…
Spin supersolid phase in coupled alternating spin chains
We study the ground state phase diagram of a two dimensional mixed-spin system of coupled alternating spin-1 and 1/2 chains with a stripe supersolid phase. Utilizing different analytical and numerical approaches such as mean field approximation, cluster mean field theory and linear spin wave theory,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962545/ https://www.ncbi.nlm.nih.gov/pubmed/29786694 http://dx.doi.org/10.1038/s41598-018-26169-y |
Sumario: | We study the ground state phase diagram of a two dimensional mixed-spin system of coupled alternating spin-1 and 1/2 chains with a stripe supersolid phase. Utilizing different analytical and numerical approaches such as mean field approximation, cluster mean field theory and linear spin wave theory, we demonstrate that our system displays a rich ground state phase diagram including novel stripe supersolid, solids with different fillings and super-counterfluid phases, in addition to a stripe solid with half filling, superfluid and Mott insulating phases. In order to find a minimal mixed-spin model for stripe supersolidity, in the second part of the paper we consider two kinds of mixed-spin system of coupled alternating spin-1 and 1/2 chains with (i) anisotropic nearest neighbor interactions, (ii) anisotropic hoppings and study their ground state phase diagrams. We demonstrate that, for the systems with uniform hoppings, the repulsive intra-chains interactions are necessary for stripe supersolidity. In this case the minimal two dimensional mixed-spin model is a system of spin-1 and spin-1/2 XXZ chains, interacting via Ising Hamiltonian. In the case of anisotropic hoppings, a system of coupled Ising chains is the minimal model. |
---|