Cargando…

Trophic overlap between expanding and contracting fish predators in a range margin undergoing change

Climate change is predicted to cause a freshening of the Baltic Sea, facilitating range expansions of freshwater species and contractions of marine. Resident marine flounders (Platichthys flesus) and expansive freshwater roach (Rutilus rutilus) are dominant consumers in the Baltic Sea sublittoral wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Westerbom, Mats, Lappalainen, Antti, Mustonen, Olli, Norkko, Alf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962582/
https://www.ncbi.nlm.nih.gov/pubmed/29785034
http://dx.doi.org/10.1038/s41598-018-25745-6
Descripción
Sumario:Climate change is predicted to cause a freshening of the Baltic Sea, facilitating range expansions of freshwater species and contractions of marine. Resident marine flounders (Platichthys flesus) and expansive freshwater roach (Rutilus rutilus) are dominant consumers in the Baltic Sea sublittoral where they occur in partial sympatry. By comparing patterns of resource use by flounders and roach along a declining resource gradient of blue mussels (Mytilus trossulus) our aim was to explore predator functional responses and the degree of trophic overlap. Understanding the nature of density-dependent prey acquisition has important implications for predicting population dynamics of both predators and their shared prey. Results showed a highly specialized diet for both species, high reliance on blue mussels throughout the range, similar prey size preference and high trophic overlap. Highest overlap occurred where blue mussels were abundant but overlap was also high where they were scarce. Our results highlight the importance of a single food item - the blue mussel - for both species, likely promoting high population size and range expansion of roach. Findings also suggest that range expansion of roach may have a top-down structuring force on mussels that differ in severity and location from that originating from resident flounders.