Cargando…
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are...
Autores principales: | Ding, Jiarui, Condon, Anne, Shah, Sohrab P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962608/ https://www.ncbi.nlm.nih.gov/pubmed/29784946 http://dx.doi.org/10.1038/s41467-018-04368-5 |
Ejemplares similares
-
densityCut: an efficient and versatile topological approach for automatic clustering of biological data
por: Ding, Jiarui, et al.
Publicado: (2016) -
siVAE: interpretable deep generative models for single-cell transcriptomes
por: Choi, Yongin, et al.
Publicado: (2023) -
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
por: Seninge, Lucas, et al.
Publicado: (2021) -
Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
por: Ding, Jiarui, et al.
Publicado: (2021) -
Deep Generative Modeling for Single-cell Transcriptomics
por: Lopez, Romain, et al.
Publicado: (2018)