Cargando…

Landau-Zener-Stückelberg Interferometry for Majorana Qubit

Stimulated by a recent experiment observing successfully two superconducting states with even- and odd-number of electrons in a nanowire topological superconductor as expected from the existence of two end Majorana quasiparticles (MQs) [Albrecht et al., Nature 531, 206 (2016)], we propose a way to m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhi, Huang, Wen-Chao, Liang, Qi-Feng, Hu, Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962612/
https://www.ncbi.nlm.nih.gov/pubmed/29785030
http://dx.doi.org/10.1038/s41598-018-26324-5
Descripción
Sumario:Stimulated by a recent experiment observing successfully two superconducting states with even- and odd-number of electrons in a nanowire topological superconductor as expected from the existence of two end Majorana quasiparticles (MQs) [Albrecht et al., Nature 531, 206 (2016)], we propose a way to manipulate Majorana qubit exploiting quantum tunneling effects. The prototype setup consists of two one-dimensional (1D) topological superconductors coupled by a tunneling junction which can be controlled by gate voltage. We show that the time evolution of superconducting phase difference at the junction under a voltage bias induces an oscillation in energy levels of the Majorana parity states, whereas the level-crossing is avoided by a small coupling energy of MQs in the individual 1D superconductors. This results in a Landau-Zener-Stückelberg (LZS) interference between the Majorana parity states. Adjusting pulses of bias voltage and gate voltage, one can construct a LZS interferometry which provides an arbitrary manipulation of the Majorana qubit.