Cargando…
Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed?
PURPOSE OF REVIEW: An increase in oscillatory activity in the γ-frequency band (approximately 50–100 Hz) has long been noted during human movement. However, its functional role has been difficult to elucidate. The advent of novel techniques, particularly transcranial alternating current stimulation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962618/ https://www.ncbi.nlm.nih.gov/pubmed/29862162 http://dx.doi.org/10.1007/s40473-018-0151-z |
_version_ | 1783324902514753536 |
---|---|
author | Nowak, Magdalena Zich, Catharina Stagg, Charlotte J. |
author_facet | Nowak, Magdalena Zich, Catharina Stagg, Charlotte J. |
author_sort | Nowak, Magdalena |
collection | PubMed |
description | PURPOSE OF REVIEW: An increase in oscillatory activity in the γ-frequency band (approximately 50–100 Hz) has long been noted during human movement. However, its functional role has been difficult to elucidate. The advent of novel techniques, particularly transcranial alternating current stimulation (tACS), has dramatically increased our ability to study γ oscillations. Here, we review our current understanding of the role of γ oscillations in the human motor cortex, with reference to γ activity outside the motor system, and evidence from animal models. RECENT FINDINGS: Evidence for the neurophysiological basis of human γ oscillations is beginning to emerge. Multimodal studies, essential given the necessarily indirect measurements acquired in humans, are beginning to provide convergent evidence for the role of γ oscillations in movement, and their relationship to plasticity. SUMMARY: Human motor cortical γ oscillations appear to play a key role in movement, and relate to learning. However, there are still major questions to be answered about their physiological basis and precise role in human plasticity. It is to be hoped that future research will take advantage of recent technical advances and the physiological basis and functional significance of this intriguing and important brain rhythm will be fully elucidated. |
format | Online Article Text |
id | pubmed-5962618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-59626182018-06-01 Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed? Nowak, Magdalena Zich, Catharina Stagg, Charlotte J. Curr Behav Neurosci Rep Neuromodulation (C Stagg, Section Editor) PURPOSE OF REVIEW: An increase in oscillatory activity in the γ-frequency band (approximately 50–100 Hz) has long been noted during human movement. However, its functional role has been difficult to elucidate. The advent of novel techniques, particularly transcranial alternating current stimulation (tACS), has dramatically increased our ability to study γ oscillations. Here, we review our current understanding of the role of γ oscillations in the human motor cortex, with reference to γ activity outside the motor system, and evidence from animal models. RECENT FINDINGS: Evidence for the neurophysiological basis of human γ oscillations is beginning to emerge. Multimodal studies, essential given the necessarily indirect measurements acquired in humans, are beginning to provide convergent evidence for the role of γ oscillations in movement, and their relationship to plasticity. SUMMARY: Human motor cortical γ oscillations appear to play a key role in movement, and relate to learning. However, there are still major questions to be answered about their physiological basis and precise role in human plasticity. It is to be hoped that future research will take advantage of recent technical advances and the physiological basis and functional significance of this intriguing and important brain rhythm will be fully elucidated. Springer International Publishing 2018-04-27 2018 /pmc/articles/PMC5962618/ /pubmed/29862162 http://dx.doi.org/10.1007/s40473-018-0151-z Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Neuromodulation (C Stagg, Section Editor) Nowak, Magdalena Zich, Catharina Stagg, Charlotte J. Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed? |
title | Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed? |
title_full | Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed? |
title_fullStr | Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed? |
title_full_unstemmed | Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed? |
title_short | Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed? |
title_sort | motor cortical gamma oscillations: what have we learnt and where are we headed? |
topic | Neuromodulation (C Stagg, Section Editor) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962618/ https://www.ncbi.nlm.nih.gov/pubmed/29862162 http://dx.doi.org/10.1007/s40473-018-0151-z |
work_keys_str_mv | AT nowakmagdalena motorcorticalgammaoscillationswhathavewelearntandwhereareweheaded AT zichcatharina motorcorticalgammaoscillationswhathavewelearntandwhereareweheaded AT staggcharlottej motorcorticalgammaoscillationswhathavewelearntandwhereareweheaded |