Cargando…
The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus
The claudin family protein Fig1 is a unique fungal protein that is involved in pheromone-induced calcium influx and membrane fusion during the mating of Saccharomyces cerevisiae and Candida albicans. Whether and how Fig1 regulates Ca(2+) homeostasis in response to extracellular stimuli is poorly und...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962676/ https://www.ncbi.nlm.nih.gov/pubmed/29867880 http://dx.doi.org/10.3389/fmicb.2018.00977 |
_version_ | 1783324915847397376 |
---|---|
author | Qian, Hui Chen, Qiuyi Zhang, Shizhu Lu, Ling |
author_facet | Qian, Hui Chen, Qiuyi Zhang, Shizhu Lu, Ling |
author_sort | Qian, Hui |
collection | PubMed |
description | The claudin family protein Fig1 is a unique fungal protein that is involved in pheromone-induced calcium influx and membrane fusion during the mating of Saccharomyces cerevisiae and Candida albicans. Whether and how Fig1 regulates Ca(2+) homeostasis in response to extracellular stimuli is poorly understood. Previously, we found Aspergillus nidulans FigA, a homolog of Fig1 in S. cerevisiae, similar to the high-affinity calcium uptake system, is required for normal growth under low-Ca(2+) minimal medium. In this study, using the calcium-sensitive photoprotein aequorin to monitor cytosolic free calcium concentration ([Ca(2+)](c)) in living cells, we found that the FigA dysfunction decreases the transient [Ca(2+)](c) induced by a high extracellular calcium stress. Furthermore, FigA acts synergistically with CchA (a high-affinity Ca(2+) channel) to coordinate cytoplasmic Ca(2+) influx in response to an extracellular Ca(2+) stimulus. Moreover, FigA mediates ER stress-induced transient [Ca(2+)](c) in the presence or absence of extracellular calcium. Most importantly, these [Ca(2+)](c) responses mediated by FigA are closely related to its conserved claudin superfamily motif, which is also required for hyphal growth and asexual development in A. nidulans. Finally, the function of FigA in Aspergillus fumigatus, the most common airborne human fungal pathogen was studied. The result showed that the two FigA homologous in A. nidulans and A. fumigatus have a large degree of functional homology not only in asexual development but also in regulating transient [Ca(2+)](c). Our study expands the knowledge of claudin family protein FigA in Ca(2+) homeostasis in response to extracellular stimuli. |
format | Online Article Text |
id | pubmed-5962676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59626762018-06-04 The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus Qian, Hui Chen, Qiuyi Zhang, Shizhu Lu, Ling Front Microbiol Microbiology The claudin family protein Fig1 is a unique fungal protein that is involved in pheromone-induced calcium influx and membrane fusion during the mating of Saccharomyces cerevisiae and Candida albicans. Whether and how Fig1 regulates Ca(2+) homeostasis in response to extracellular stimuli is poorly understood. Previously, we found Aspergillus nidulans FigA, a homolog of Fig1 in S. cerevisiae, similar to the high-affinity calcium uptake system, is required for normal growth under low-Ca(2+) minimal medium. In this study, using the calcium-sensitive photoprotein aequorin to monitor cytosolic free calcium concentration ([Ca(2+)](c)) in living cells, we found that the FigA dysfunction decreases the transient [Ca(2+)](c) induced by a high extracellular calcium stress. Furthermore, FigA acts synergistically with CchA (a high-affinity Ca(2+) channel) to coordinate cytoplasmic Ca(2+) influx in response to an extracellular Ca(2+) stimulus. Moreover, FigA mediates ER stress-induced transient [Ca(2+)](c) in the presence or absence of extracellular calcium. Most importantly, these [Ca(2+)](c) responses mediated by FigA are closely related to its conserved claudin superfamily motif, which is also required for hyphal growth and asexual development in A. nidulans. Finally, the function of FigA in Aspergillus fumigatus, the most common airborne human fungal pathogen was studied. The result showed that the two FigA homologous in A. nidulans and A. fumigatus have a large degree of functional homology not only in asexual development but also in regulating transient [Ca(2+)](c). Our study expands the knowledge of claudin family protein FigA in Ca(2+) homeostasis in response to extracellular stimuli. Frontiers Media S.A. 2018-05-15 /pmc/articles/PMC5962676/ /pubmed/29867880 http://dx.doi.org/10.3389/fmicb.2018.00977 Text en Copyright © 2018 Qian, Chen, Zhang and Lu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Qian, Hui Chen, Qiuyi Zhang, Shizhu Lu, Ling The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus |
title | The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus |
title_full | The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus |
title_fullStr | The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus |
title_full_unstemmed | The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus |
title_short | The Claudin Family Protein FigA Mediates Ca(2+) Homeostasis in Response to Extracellular Stimuli in Aspergillus nidulans and Aspergillus fumigatus |
title_sort | claudin family protein figa mediates ca(2+) homeostasis in response to extracellular stimuli in aspergillus nidulans and aspergillus fumigatus |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962676/ https://www.ncbi.nlm.nih.gov/pubmed/29867880 http://dx.doi.org/10.3389/fmicb.2018.00977 |
work_keys_str_mv | AT qianhui theclaudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus AT chenqiuyi theclaudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus AT zhangshizhu theclaudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus AT luling theclaudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus AT qianhui claudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus AT chenqiuyi claudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus AT zhangshizhu claudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus AT luling claudinfamilyproteinfigamediatesca2homeostasisinresponsetoextracellularstimuliinaspergillusnidulansandaspergillusfumigatus |