Cargando…

Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach

Predictive computation models offer the potential to uncover the mechanisms of treatments whose actions cannot be easily determined by experimental or imaging techniques. This is particularly relevant for investigating left ventricular mechanical assistance, a therapy for end-stage heart failure, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Sack, Kevin L., Dabiri, Yaghoub, Franz, Thomas, Solomon, Scott D., Burkhoff, Daniel, Guccione, Julius M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962934/
https://www.ncbi.nlm.nih.gov/pubmed/29867563
http://dx.doi.org/10.3389/fphys.2018.00520
_version_ 1783324967703674880
author Sack, Kevin L.
Dabiri, Yaghoub
Franz, Thomas
Solomon, Scott D.
Burkhoff, Daniel
Guccione, Julius M.
author_facet Sack, Kevin L.
Dabiri, Yaghoub
Franz, Thomas
Solomon, Scott D.
Burkhoff, Daniel
Guccione, Julius M.
author_sort Sack, Kevin L.
collection PubMed
description Predictive computation models offer the potential to uncover the mechanisms of treatments whose actions cannot be easily determined by experimental or imaging techniques. This is particularly relevant for investigating left ventricular mechanical assistance, a therapy for end-stage heart failure, which is increasingly used as more than just a bridge-to-transplant therapy. The high incidence of right ventricular failure following left ventricular assistance reflects an undesired consequence of treatment, which has been hypothesized to be related to the mechanical interdependence between the two ventricles. To investigate the implication of this interdependence specifically in the setting of left ventricular assistance device (LVAD) support, we introduce a patient-specific finite-element model of dilated chronic heart failure. The model geometry and material parameters were calibrated using patient-specific clinical data, producing a mechanical surrogate of the failing in vivo heart that models its dynamic strain and stress throughout the cardiac cycle. The model of the heart was coupled to lumped-parameter circulatory systems to simulate realistic ventricular loading conditions. Finally, the impact of ventricular assistance was investigated by incorporating a pump with pressure-flow characteristics of an LVAD (HeartMate II™ operating between 8 and 12 k RPM) in parallel to the left ventricle. This allowed us to investigate the mechanical impact of acute left ventricular assistance at multiple operating-speeds on right ventricular mechanics and septal wall motion. Our findings show that left ventricular assistance reduces myofiber stress in the left ventricle and, to a lesser extent, right ventricle free wall, while increasing leftward septal-shift with increased operating-speeds. These effects were achieved with secondary, potentially negative effects on the interventricular septum which showed that support from LVADs, introduces unnatural bending of the septum and with it, increased localized stress regions. Left ventricular assistance unloads the left ventricle significantly and shifts the right ventricular pressure-volume-loop toward larger volumes and higher pressures; a consequence of left-to-right ventricular interactions and a leftward septal shift. The methods and results described in the present study are a meaningful advancement of computational efforts to investigate heart-failure therapies in silico and illustrate the potential of computational models to aid understanding of complex mechanical and hemodynamic effects of new therapies.
format Online
Article
Text
id pubmed-5962934
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-59629342018-06-04 Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach Sack, Kevin L. Dabiri, Yaghoub Franz, Thomas Solomon, Scott D. Burkhoff, Daniel Guccione, Julius M. Front Physiol Physiology Predictive computation models offer the potential to uncover the mechanisms of treatments whose actions cannot be easily determined by experimental or imaging techniques. This is particularly relevant for investigating left ventricular mechanical assistance, a therapy for end-stage heart failure, which is increasingly used as more than just a bridge-to-transplant therapy. The high incidence of right ventricular failure following left ventricular assistance reflects an undesired consequence of treatment, which has been hypothesized to be related to the mechanical interdependence between the two ventricles. To investigate the implication of this interdependence specifically in the setting of left ventricular assistance device (LVAD) support, we introduce a patient-specific finite-element model of dilated chronic heart failure. The model geometry and material parameters were calibrated using patient-specific clinical data, producing a mechanical surrogate of the failing in vivo heart that models its dynamic strain and stress throughout the cardiac cycle. The model of the heart was coupled to lumped-parameter circulatory systems to simulate realistic ventricular loading conditions. Finally, the impact of ventricular assistance was investigated by incorporating a pump with pressure-flow characteristics of an LVAD (HeartMate II™ operating between 8 and 12 k RPM) in parallel to the left ventricle. This allowed us to investigate the mechanical impact of acute left ventricular assistance at multiple operating-speeds on right ventricular mechanics and septal wall motion. Our findings show that left ventricular assistance reduces myofiber stress in the left ventricle and, to a lesser extent, right ventricle free wall, while increasing leftward septal-shift with increased operating-speeds. These effects were achieved with secondary, potentially negative effects on the interventricular septum which showed that support from LVADs, introduces unnatural bending of the septum and with it, increased localized stress regions. Left ventricular assistance unloads the left ventricle significantly and shifts the right ventricular pressure-volume-loop toward larger volumes and higher pressures; a consequence of left-to-right ventricular interactions and a leftward septal shift. The methods and results described in the present study are a meaningful advancement of computational efforts to investigate heart-failure therapies in silico and illustrate the potential of computational models to aid understanding of complex mechanical and hemodynamic effects of new therapies. Frontiers Media S.A. 2018-05-11 /pmc/articles/PMC5962934/ /pubmed/29867563 http://dx.doi.org/10.3389/fphys.2018.00520 Text en Copyright © 2018 Sack, Dabiri, Franz, Solomon, Burkhoff and Guccione. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Sack, Kevin L.
Dabiri, Yaghoub
Franz, Thomas
Solomon, Scott D.
Burkhoff, Daniel
Guccione, Julius M.
Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach
title Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach
title_full Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach
title_fullStr Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach
title_full_unstemmed Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach
title_short Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach
title_sort investigating the role of interventricular interdependence in development of right heart dysfunction during lvad support: a patient-specific methods-based approach
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962934/
https://www.ncbi.nlm.nih.gov/pubmed/29867563
http://dx.doi.org/10.3389/fphys.2018.00520
work_keys_str_mv AT sackkevinl investigatingtheroleofinterventricularinterdependenceindevelopmentofrightheartdysfunctionduringlvadsupportapatientspecificmethodsbasedapproach
AT dabiriyaghoub investigatingtheroleofinterventricularinterdependenceindevelopmentofrightheartdysfunctionduringlvadsupportapatientspecificmethodsbasedapproach
AT franzthomas investigatingtheroleofinterventricularinterdependenceindevelopmentofrightheartdysfunctionduringlvadsupportapatientspecificmethodsbasedapproach
AT solomonscottd investigatingtheroleofinterventricularinterdependenceindevelopmentofrightheartdysfunctionduringlvadsupportapatientspecificmethodsbasedapproach
AT burkhoffdaniel investigatingtheroleofinterventricularinterdependenceindevelopmentofrightheartdysfunctionduringlvadsupportapatientspecificmethodsbasedapproach
AT guccionejuliusm investigatingtheroleofinterventricularinterdependenceindevelopmentofrightheartdysfunctionduringlvadsupportapatientspecificmethodsbasedapproach