Cargando…
Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches
BACKGROUND: Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation be...
Autores principales: | Crichton, Gamal, Guo, Yufan, Pyysalo, Sampo, Korhonen, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963080/ https://www.ncbi.nlm.nih.gov/pubmed/29783926 http://dx.doi.org/10.1186/s12859-018-2163-9 |
Ejemplares similares
-
A neural network multi-task learning approach to biomedical named entity recognition
por: Crichton, Gamal, et al.
Publicado: (2017) -
Graph embedding on biomedical networks: methods, applications and evaluations
por: Yue, Xiang, et al.
Publicado: (2020) -
Application and evaluation of knowledge graph embeddings in biomedical data
por: Alshahrani, Mona, et al.
Publicado: (2021) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023)