Cargando…
Novel flax orbitide derived from genetic deletion
BACKGROUND: Flaxseed orbitides are homodetic plant cyclic peptides arising from ribosomal synthesis and post-translation modification (N to C cyclization), and lacking cysteine double bonds (Nat Prod Rep 30:108-160, 2013). Screening for orbitide composition was conducted on the flax core collection...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963108/ https://www.ncbi.nlm.nih.gov/pubmed/29783946 http://dx.doi.org/10.1186/s12870-018-1303-8 |
Sumario: | BACKGROUND: Flaxseed orbitides are homodetic plant cyclic peptides arising from ribosomal synthesis and post-translation modification (N to C cyclization), and lacking cysteine double bonds (Nat Prod Rep 30:108-160, 2013). Screening for orbitide composition was conducted on the flax core collection (FCC) grown at both Saskatoon, Saskatchewan and Morden, Manitoba over three growing seasons (2009-2011). Two flax (Linum usitatissimum L.) accessions ‘Hollandia’ (CN 98056) and ‘Z 11637’ (CN 98150) produce neither [1−9-NαC]-linusorb B2 (3) nor [1−9-NαC]-linusorb B3 (1). Mass spectrometry was used to identify novel compounds and elucidate their structure. NMR spectroscopy was used to corroborate structural information. RESULTS: Experimental findings indicated that these accessions produce a novel orbitide, identified in three oxidation states having quasimolecular ion peaks at m/z 1072.6 (18), 1088.6 (19), and 1104.6 (20) [M + H](+) corresponding to molecular formulae C(57)H(86)N(9)O(9)S, C(57)H(86)N(9)O(10)S, and C(57)H(86)N(9)O(11)S, respectively. The structure of 19 was confirmed unequivocally as [1−9-NαC]-OLIPPFFLI. PCR amplification and sequencing of the gene coding for 18, using primers developed for 3 and 1, identified the putative linear precursor protein of 18 as being comprised of the first three amino acid residues of 3 (MLI), four conserved amino acid residues of 3 and/or 1 (PPFF), and the last two residues of 1 (LI). CONCLUSION: Comparison of gene sequencing data revealed that a 117 base pair deletion had occurred that resulted in truncation of both 3 and 1 to produce a sequence encoding for the novel orbitide precursor of 18. This observation suggests that repeat units of flax orbitide genes are conserved and suggests a novel mechanism for evolution of orbitide gene diversity. Orbitides 19 and 20 contain MetO and MetO(2), respectively, and are not directly encoded, but are products of post-translation modification of Met present in 18 ([1−9-NαC]-MLIPPFFLI). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12870-018-1303-8) contains supplementary material, which is available to authorized users. |
---|