Cargando…
Correlation-based iterative clustering methods for time course data: The identification of temporal gene response modules for influenza infection in humans
Many pragmatic clustering methods have been developed to group data vectors or objects into clusters so that the objects in one cluster are very similar and objects in different clusters are distinct based on some similarity measure. The availability of time course data has motivated researchers to...
Autores principales: | Carey, Michelle, Wu, Shuang, Gan, Guojun, Wu, Hulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963321/ https://www.ncbi.nlm.nih.gov/pubmed/29928719 http://dx.doi.org/10.1016/j.idm.2016.07.001 |
Ejemplares similares
-
More powerful significant testing for time course gene expression data using functional principal component analysis approaches
por: Wu, Shuang, et al.
Publicado: (2013) -
iterClust: a statistical framework for iterative clustering analysis
por: Ding, Hongxu, et al.
Publicado: (2018) -
Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications
por: Qian, Guoqi, et al.
Publicado: (2016) -
A general iterative clustering algorithm
por: Lin, Ziqiang, et al.
Publicado: (2022) -
Data clustering: theory, algorithms, and applications
por: Gan, Guojun, et al.
Publicado: (2007)