Cargando…
Effect of missing data on multitask prediction methods
There has been a growing interest in multitask prediction in chemoinformatics, helped by the increasing use of deep neural networks in this field. This technique is applied to multitarget data sets, where compounds have been tested against different targets, with the aim of developing models to pred...
Autores principales: | de la Vega de León, Antonio, Chen, Beining, Gillet, Valerie J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964064/ https://www.ncbi.nlm.nih.gov/pubmed/29789977 http://dx.doi.org/10.1186/s13321-018-0281-z |
Ejemplares similares
-
Deep Personal Multitask Prediction of Diabetes Complication with Attentive Interactions Predicting Diabetes Complications by Multitask-Learning
por: Zuo, Ming, et al.
Publicado: (2022) -
Multitask CapsNet: An Imbalanced Data Deep Learning
Method for Predicting Toxicants
por: Wang, Yiwei, et al.
Publicado: (2021) -
Analysis of the benefits of imputation models over traditional QSAR models for toxicity prediction
por: Walter, Moritz, et al.
Publicado: (2022) -
Reducing Misses and Near Misses Related to Multitasking on the Electronic Health Record: Observational Study and Qualitative Analysis
por: Ratanawongsa, Neda, et al.
Publicado: (2018) -
Effects of media multitasking frequency on a novel volitional multitasking paradigm
por: Lopez, Jesus J., et al.
Publicado: (2022)