Cargando…

Behavioral tagging and capture: long-term memory decline in middle-aged rats

Decline in cognitive functions, including hippocampus-dependent spatial memory, is commonly observed at a later stage of aging (e.g., >20 months old in rodents) and typically studied after a discrete learning event. How normal aging, particularly at an early stage, affects the modulatory aspect o...

Descripción completa

Detalles Bibliográficos
Autores principales: Gros, Alexandra, Wang, Szu-Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964067/
https://www.ncbi.nlm.nih.gov/pubmed/29609080
http://dx.doi.org/10.1016/j.neurobiolaging.2018.02.023
Descripción
Sumario:Decline in cognitive functions, including hippocampus-dependent spatial memory, is commonly observed at a later stage of aging (e.g., >20 months old in rodents) and typically studied after a discrete learning event. How normal aging, particularly at an early stage, affects the modulatory aspect of memory persistence is underinvestigated. Previous studies in young animals show that weak, fading memories can last longer if a modulating event, such as spatial novelty, is introduced around memory encoding. This is known as behavioral tagging and capture (BTC). Here, we investigated how early aging (10–13 months old) affects BTC in an appetitive delayed-matching-to-place task. We trained rats when they were young and middle aged and found that novelty facilitated long-term memory persistence in young but not in middle-aged rats. However, re-exposure to the encoded environment after learning improved memory persistence in middle-aged rats. BTC, combined with memory reactivation, facilitated memory persistence through reconsolidation. Our results point toward a weakened tagging and capture mechanism before reduction of plasticity-related proteins at an early stage of aging.